A master equation approach to nonlinear optics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9185
(http://iopscience.iop.org/0305-4470/9/1/525)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:12

Please note that terms and conditions apply.

Corigendum

A msere equation approach to nonlinear optics

MoNeil K J and Walls D F 1974 J. Phys. A : Math., Nucl. Gen. 7 617-31
on page 624 equation (5.10) should read

$$
\begin{equation*}
A_{2 n}=-\sqrt{ } \pi(4 n-1) \sum_{i=n}^{\infty} \rho_{2 l}(0) \frac{(2 l)!}{2^{2 l}(l-n)!\Gamma\left(n+l+\frac{1}{2}\right)} \tag{5.10}
\end{equation*}
$$

On pages 627, 628 equations (6.4) to (6.6) should be replaced by

$$
\begin{equation*}
\bar{\rho}_{n}(s)=\frac{n!\left(N_{0}-n_{\mathrm{S}}^{0}\right)!}{\left(N_{0}-n\right)!n_{\mathrm{S}}^{0}!}\left(\prod_{j=n_{\mathrm{s}}}^{n}\left(s+h_{j}\right)\right)^{-1}, \quad n_{\mathrm{S}}^{0} \leqslant n \leqslant N_{0} \tag{6.4}
\end{equation*}
$$

were

$$
h_{j}=(j+1)\left(N_{0}-j\right) .
$$

$j(s)=0$ otherwise. Let

$$
M= \begin{cases}\frac{1}{2} N_{0}, & N_{0} \text { even } \tag{6.5}\\ \frac{1}{2}\left(N_{0}-1\right), & N_{0} \text { odd }\end{cases}
$$

Then if $n_{s}^{0} \geqslant M$ we obtain repeated factors among the $\left(s+h_{j}\right)$ in (6.4) when $n \geqslant M$. The most convenient way to take these repeated factors into account is to rewrite (6.4):
$p_{p}(s)= \begin{cases}\frac{n!\left(N_{0}-n_{S}^{0}\right)!}{\left(N_{0}-n\right)!n_{S}^{0}!}\left(\prod_{j=n_{S}^{0}}^{n}\left(s+h_{j}\right)\right)^{-1}, & n \leqslant M-1 \\ \frac{n!\left(N_{0}-n_{S}^{0}\right)!}{\left(N_{0}-n\right)!n_{S}^{0}!}\left(\prod_{j=n_{S}^{0}}^{M-1}\left(s+h_{j}\right) \prod_{k=M}^{n}\left(s+h_{k}\right)\right)^{-1}, & n \geqslant M \text { and } n_{S}^{0} \leqslant M .\end{cases}$
laversion of (6.6) (using convolutions where necessary) yields
$\left.p_{\pi} \tau\right)= \begin{cases}\frac{n!\left(N_{0}-n_{S}^{0}\right)!}{\left(N_{0}-n\right)!n_{\mathrm{S}}^{0}!} \sum_{j=n_{S}^{0}}^{n} A_{j}^{n g, n} \exp \left(-h_{j} \tau\right), & n \leqslant M-1 \\ \frac{n!\left(N_{0}-n_{S}^{0}\right)!}{\left(N_{0}-n\right)!n_{S}^{0}!} \sum_{j=n_{S}^{0}}^{M-1} \sum_{k=M}^{n} A_{j}^{n \mathrm{~s}, M-1} A_{k}^{M, n} & \\ \times\left\{\left(1-\delta_{h_{j}, h_{k}}\right)\left[\exp \left(-h_{j} \tau\right)-\exp \left(-h_{k} \tau\right)\right] /\left(h_{k}-h_{j}\right)\right. & n \geqslant M \text { and } n_{S}^{0} \leqslant M \\ \left.+\delta_{h_{j}, h_{k}} \tau \exp \left(-h_{j} \tau\right)\right\} & \end{cases}$
Where the $A_{j}^{m, n}$ are the appropriate coefficients in the partial fraction expansions of the minator products in (6.6), ie

$$
\begin{equation*}
A_{j}^{m, n}=\left(\prod_{\substack{i=m \\ i \neq j}}^{n}\left(h_{i}-h_{j}\right)\right)^{-1} \tag{6.8}
\end{equation*}
$$

On page 629 equation (7.2) should read

$$
\begin{equation*}
\frac{\mathrm{d}\left\langle n^{2}\right\rangle}{\mathrm{d} \tau}=-4\left\langle n^{3}\right\rangle+8\left\langle n^{2}\right\rangle-4\langle n\rangle . \tag{7.}
\end{equation*}
$$

Equation (7.3) should read

$$
\begin{equation*}
\langle n(\tau)\rangle \simeq\left[\langle n(0)\rangle+(1-\langle n(0)\rangle) \mathrm{e}^{\tau}\right]^{-1}\langle n(0)\rangle . \tag{73}
\end{equation*}
$$

The authors wish to thank Professor R Loudon and H D Simaan for very helpfal correspondence on these points.

